

MCP2518FD CLICK

PID: MIKROE-3060
Weight: 28 g

MCP2518FD click is a complete CAN solution, which can be used as a control node in a CAN

network. The Click board™ is used to provide the microcontroller (MCU) with unrestricted access to

the CAN network bus. MCP2518FD click is equipped with both the control logic and the physical

interface ICs. MCP2518FD click provides a reliable high-speed CAN interface to the MCU, providing

multiple operating modes (CAN 2.0, CAN FD, Listen Only mode, Sleep and Low Power mode…),

CAN bit stream processing (decoding and encoding of the CAN messages, error handling…), TX

prioritizing, RX filtering, FIFO buffer, interrupt engine, and more.

MCP2518FD click is supported by a mikroSDK compliant library, which includes functions that

simplify software development. This Click board™ comes as a fully tested product, ready to be used

on a system equipped with the mikroBUS™ socket.

The physical layer is implemented by using a separate IC, which provides increased
robustness, required for the automotive applications. It features three operating modes,

remote wake-up via the CAN, and offers ideally passive behavior on the CAN bus when
it is powered off. These features allow MCP2518FD click to be used for the
development of a wide range of automotive diagnostic applications, even on MCUs that
do not natively support CAN interface.

HOW DOES IT WORK?

The Click board™ consists of a transceiver IC, a low-level physical layer IC (PHY)
which provides a physical connection with the CAN bus itself, and a CAN controller IC,
which is used as an interface between the MCU and the PHY IC. MCP2518FD click
uses the ATA6563, a high-speed CAN transceiver with Standby mode, and
the MCP2518FD, CAN FD controller with the SPI interface, both ICs by Microchip.

The role of the CAN bus controller is to provide arbitration, message framing, message

validation, error detection, message filtering, and so on. Among all other tasks - it is used to

provide clearly formatted CAN data for the application layer, running on the host MCU.

https://download.mikroe.com/documents/datasheets/ata6563-datasheet.pdf
https://download.mikroe.com/documents/datasheets/MCP2518FD.pdf
https://www.microchip.com/

CAN TRANSCEIVER

As the physical layer (PHY) IC, the ATA6563, a high-speed CAN transceiver with
Standby mode, by Microchip. This IC provides the physical connection with the CAN
bus and as such, it provides high resistance to electrostatic discharge and other
electromagnetic phenomena, with its bus pins protected against transients, often
encountered in the automotive environment. It allows communication speed up to
5Mbps. For the CAN bus device, it is important not to block the entire bus by
permanently setting itself as the dominant node. For this reason, the PHY IC has the TX
time-out function. It is also important to have defined bus pin states of nodes at all
times. The ATA6563 PHY IC has its functional behavior predictive under all supply
conditions. The ATA6563 is powered directly from the mikroBUS™ 5V power rail. This
IC can work in several modes:

Normal mode is engaged when the STBY pin is at the logic LOW level, while the TXD
pin is held to a HIGH logic level. While in the Normal mode, bus biasing is set to half the
supply voltage, and the data can be transmitted and received via the CANH and CANL
bus lines.

If the STBY pin of the ATA6563 is set to a HIGH logic level, the PHY IC will enter the
Standby mode. While in Standby mode, the device is not able to transmit or correctly
receive any data. The internal TX and HSC (high-speed comparator) sections are
turned off, reducing the power consumption. Also, the bus lines are biased to the GND

level. While in Standby mode, the device actively listens to the CAN bus traffic, looking
for a valid wake-up pattern.

Since the STBY pin directly controls the operating mode of the PHY IC, it is routed to
the onboard SMD jumper labeled as the STBY, allowing more than one way of control.
This SMD jumper allows choice between connecting the STBY pin to the GND directly
(LOW logic level), or allowing it to be controlled via the source selected by yet another
SMD jumper, labeled as STBY SEL: control via the AN pin of the mikroBUS™, or the
INT0/GPIO pin of the CAN control module IC.

CAN BUS CONTROLLER

The MCP2518FD, CAN FD controller with the SPI interface, also by Microchip, is used
to control and shape the CAN bus data traffic. While the PHY IC provides CAN
communication on a basic - physical level, the MCP2518FD takes care of all the
communication and data formatting. It manages the proper decoding and encoding of
messages, data arbitration, message transmission prioritizing and filtering, provides the
FIFO buffer for the messages, and so on. This IC can even provide a clock source to
the host MCU, reducing the number of needed components to a minimum. On one end,
it uses the SPI to communicate with the host MCU, while on the other end, it uses
RXCAN and TXCAN pins to communicate with the PHY layer IC. The MCP2518FD
supports CAN frames in classic format (CAN2.0B), as well as the CAN Flexible Data
Rate format (CAN FD), as specified in ISO11898-1:2015.

CAN FD controller IC contains 2K of integrated RAM, which is used as the message
buffer. Besides this, it also contains a number of SFR registers, used to configure and
operate the controller IC, including the configuration of the INT/GPIO pins, their
direction and polarity, configuration of the clock section, operating mode (including the
Low Power mode for the MCP2518FD IC), FIFO control and message filtering, and so
on. All the registers are 32bit wide. The datasheet of the MCP2518FD IC can be
consulted for a comprehensive list of all the SFR registers and their functions. However,
the provided library contains functions which can be used with MikroElektronika
compilers. The included example application demonstrates the use of these functions,
and it can be used as a reference for custom development.

There are three interrupt pins routed to the mikroBUS™: INT, INT0, and INT1, pins of
the MCP2518FD IC are routed to the INT, TX and RX pins, respectively. While the INT
pin is always an interrupt output pin, used to alert the MCU of the interrupt event that is
enabled and has its flag bit activated, INT0 and INT1 pins are used to alert the MCU
about the RX and TX events (if these interrupts are enabled), or as the GPIO pins. INT0
pin is also routed to the onboard SMD jumper labeled as STBY SEL, so that can be
used to control the PHY IC standby mode. All interrupt pins are active low.

CLKO pin from the MCP2518FD IC is routed to the PWM pin of the mikroBUS™. This
pin can be used to provide the clock output for the host MCU. Before it is used, it has to

be configured via the SFR registers. It is derived from the input clock, generated by the
onboard chip oscillator. The onboard SMD jumper allows frequency selection between
20MHz and 40MHz.

This IC can be interfaced directly to the MCU pins. To provide support for both the 3.3V
and 5V operating MCUs, the Click board™ is provided with the onboard SMD jumper.
This jumper determines only the logic voltage level and it is routed to both the VCC pin
of the MCP2518FD IC and the VIO pin of the ATA6563. However, for proper operation
of the Click board™, both 3.3V and 5V rails from the mikroBUS™ are used.

The Click board™ comes equipped with the standard DB-9 connector, making the
interfacing with the CAN bus simple and effortless.

LEDS AND BUTTONS

Designator Name Type Description

CN1 - CONNECTOR DB9 connector for CAN

SOFTWARE SUPPORT

We provide a library for the MCP2518FD Click on our LibStock page, as well as a demo
application (example), developed using MikroElektronika compilers. The demo can run
on all the main MikroElektronika development boards.

https://libstock.mikroe.com/projects/view/2452/mcp2518fd-click
https://www.mikroe.com/compilers
http://shop.mikroe.com/development-boards

Library Description
Library offers a choice to exchange messages with the other device by using CAN
communication. Library also offers a choice to access a control, status and RAM
registers of the device. For more details check documentation.

Key functions:

 void MCP2518FD_transmitMessage(uint8_t numDataBytes, uint8_t *transmitFlag, uint8_t

*dataIn) - Transmits the desired message and checks is message successfully sent.

 void MCP2518FD_receiveMessage(uint8_t *receiveFlag, uint8_t *dataOut) - Receives the
message and checks is message successfully received.

 int8_t MCP2518FD_Configure(T_MCP2518FD_id index, T_MCP2518FD_cfg* config) - CAN Control
register configuration.

 int8_t MCP2518FD_ConfigureObjectReset(T_MCP2518FD_cfg* config) - Reset Configure object to
reset values.

Examples description
The application is composed of the three sections :

 System Initialization - Initializes peripherals and pins.

 Application Initialization - Initializes SPI interface and performs the device configuration to work
properly.

 Application Task - (code snippet) - Always checks is new message in FIFO ready for receiving and
when is message ready, receives a message from the other device. Also in this example we can
sent the desired message via CAN communication to the other device. We can choose a message
to be sent by sending the determined command to the UART. In this example the command, which
determines a message, can be number from 1 to 7.

void applicationTask()

{

 if (UART_Rdy_Ptr())

 {

 rxDat = UART_Rd_Ptr();

 chPtr = &txd[0];

 switch (rxDat)

 {

 case '1' :

 {

 _strcpy(chPtr, &txtMessage1[0]);

 MCP2518FD_transmitMessage(5, &checkFlag, &txd[0]);

 if (checkFlag == 1)

 {

 mikrobus_logWrite("Message Sent", _LOG_LINE);

 }

 break;

 }

 case '2' :

 {

 _strcpy(chPtr, &txtMessage2[0]);

 MCP2518FD_transmitMessage(7, &checkFlag, &txd[0]);

 if (checkFlag == 1)

 {

 mikrobus_logWrite("Message Sent", _LOG_LINE);

 }

 break;

 }

 case '3' :

 {

 _strcpy(chPtr, &txtMessage3[0]);

 MCP2518FD_transmitMessage(2, &checkFlag, &txd[0]);

 if (checkFlag == 1)

 {

 mikrobus_logWrite("Message Sent", _LOG_LINE);

 }

 break;

 }

 case '4' :

 {

 _strcpy(chPtr, &txtMessage4[0]);

 MCP2518FD_transmitMessage(4, &checkFlag, &txd[0]);

 if (checkFlag == 1)

 {

 mikrobus_logWrite("Message Sent", _LOG_LINE);

 }

 break;

 }

 case '5' :

 {

 _strcpy(chPtr, &txtMessage5[0]);

 MCP2518FD_transmitMessage(3, &checkFlag, &txd[0]);

 if (checkFlag == 1)

 {

 mikrobus_logWrite("Message Sent", _LOG_LINE);

 }

 break;

 }

 case '6' :

 {

 _strcpy(chPtr, &txtMessage6[0]);

 MCP2518FD_transmitMessage(3, &checkFlag, &txd[0]);

 if (checkFlag == 1)

 {

 mikrobus_logWrite("Message Sent", _LOG_LINE);

 }

 break;

 }

 case '7' :

 {

 _strcpy(chPtr, &txtMessage7[0]);

 MCP2518FD_transmitMessage(7, &checkFlag, &txd[0]);

 if (checkFlag == 1)

 {

 mikrobus_logWrite("Message Sent", _LOG_LINE);

 }

 break;

 }

 default :

 {

 break;

 }

 }

 }

 MCP2518FD_receiveMessage(&checkFlag, &rxd[0]);

 if (checkFlag == 1)

 {

 chPtr = &rxd[0];

 mikrobus_logWrite("Received Message : ", _LOG_TEXT);

 mikrobus_logWrite(chPtr, _LOG_LINE);

 }

}

Additional Functions :

 char * _strcpy(char * _to, char * _from) - String copy function.

The full application code, and ready to use projects can be found on our LibStock page.
Other mikroE Libraries used in the example:

 SPI

 UART

Additional notes and informations
Depending on the development board you are using, you may need USB UART

click, USB UART 2 click or RS232 click to connect to your PC, for development systems
with no UART to USB interface available on the board. The terminal available in all
MikroElektronika compilers, or any other terminal application of your choice, can be used
to read the message.

MIKROSDK

This click board is supported with mikroSDK - MikroElektronika Software Development
Kit. To ensure proper operation of mikroSDK compliant click board demo applications,
mikroSDK should be downloaded from the LibStock and installed for the compiler you
are using.

https://libstock.mikroe.com/projects/view/2452/mcp2518fd-click
https://shop.mikroe.com/usb-uart-click
https://shop.mikroe.com/usb-uart-click
https://shop.mikroe.com/usb-uart-2-click
https://shop.mikroe.com/rs232-click
https://shop.mikroe.com/compilers
https://www.mikroe.com/mikrosdk
https://libstock.mikroe.com/projects/view/2249/mikrosdk

