PXA270M Migration

CCBU Applications Engineering

Migrating your design from PXA270 to PXA270M

Level Set

- PXA270 was manufactured at Intel Fabs
- PXA270M is manufactured at TSMC Fabs
 - Marvell engineers migrated the RTL database
- During the migration, Marvell fixed some of the errata from the PXA270
 - Errata fixes are documented in the Spec Update
 - No other changes were made
- However, due to process changes both parts may operate differently;
 - I/O buffers and pullup and pulldown resistors
- A Specification Clarification was added to the Spec Update document to highlight potential differences
- PXA270 and PXA270M are <u>not</u> drop in replacements
- Some changes may be needed for HW and SW components to operate

PXA270M Migration Failures

- A number of migration issues have been escalated and debugged
 - Many of these issues have been caused by HW specifications and SW initialization not being followed correctly
- In the event of PXA270M migration failures, follow the basic steps of identifying root cause:
 - Check the power-on sequencing
 - -Check the voltage levels for the power domains
 - –VCC_CORE typical voltage has been changed Errata #59
 - -Be prepared to re-calibrate drive strength settings for SDRAM and LCD
 - -Internal resistors are different; this could affect pin load or external devices
 - -Ensure correct SW configuration for the unit in question
- Just because PXA270 has passed a customer production qual does not mean that all the specifications were followed correctly
 - –Some migration issues were root caused to not following spec but PXA270 still worked!
 - -PXA270M is different and may not perform the same, while out of spec!

PXA270M and **PXA270** Spec Update Differences

- Both PXA270 and PXA270M have separate Spec Updates!
 - PXA270
 - Errata #60 describes "Voltage Sensitivity" problem
 - The workaround is to raise certain VCC_CORE operating voltages
 - This is an errata with "No Fix" status = customers should use workaround to avoid errata
 - PXA270M
 - Errata #59 (Same as PXA270 #60) describes "Voltage Sensitivity" problem
 - Use the raised VCC_CORE voltages in the workaround as the new Specification
 - This is an errata with "Fixed" status = customers MUST use these voltages
 - Voltage Ssensitivity issue does not exist on PXA270M because the spec has changed!
- Both PXA270 and PXA270M share the same EMTS!
 - The documented VCC_CORE voltage specifications are the "New Specs" for PXA270M
 - PXA270 designs are recommended to follow the "workaround"
 - PXA270M designs must follow the "specification"

PXA270M Voltage Spec As Updated in EMTS Rev D April '09

- VCC_CORE Vmin Spec (EMTS)
 - VVCCC1: Core Voltage and Frequency Range 1 (13/13/13/13 CCCR[CPDIS]=1, CCCR[PPDIS]=1)
 - Typical: <u>1.0V</u>
 - Min: <u>0.95V</u>
 - VVCCC2: Core Voltage and Frequency Range 2 (13/13/13/13 CCCR[CPDIS]=1, CCCR[PPDIS]=0), (91/45.5/91/45.5), and (104/104/104)
 - Typical: <u>1.0V</u>
 - Min: 0.95V
 - Deep-Idle:
 - Max: <u>1.705V</u>
 - Typical: <u>1.0V</u>
 - Min: 0.95V
- VCC_BAT Vmin Spec (EMTS)
 - VVCC0:
 - Min: 2.4V
- These voltage specifications eliminate Errata #59 for PXA270M and are required in the PXA270M

Clarifying The Voltage Specifications 1 of 2

EMTS (Table 5-11): Core Voltage and Frequency Electrical Spec

Symbol	Description	Min	Typical	Max	Units			
Core Voltage and Frequency Range 1 (13/13/13/13 CCCR[CPDIS]=1, CCCR[PPDIS]=1)								
VVCCC1	Voltage applied on VCC_CORE	270M=0.95 270=0.8075)	270M=1.0 270=0.9	1.705	V			
fCORE1	Core operating frequency	13		13	MHz			
Tpwramp	Ramp Rate		10	12	mV/uS			
Core Voltage and Frequency Range 2 (13/13/13/13 CCCR[CPDIS]=1, CCCR[PPDIS]=0), (91/45.5/91/45.5), and (104/104/104/104)								
VVCCC2	Voltage applied on VCC_CORE	270M=0.95 270=0.855	270M=1.0 270=0.9	1.705	V			
fCORE12	Core operating frequency	91		104	MHz			
Tpwramp	Ramp Rate		10	12	mV/uS			

EMTS (Table 5-13): Core Voltage Specifications For Low Power Modes

Mode	Description	Min	Typical	Max	Units
Standby	Voltage applied on VCC_CORE	1.045	1.1	1.21	V
Deep-Idle	Voltage applied on VCC_CORE	270M=0.95 270=0.8075	270M=1.0 270=0.85	270M=1.705 270=0.935	V

Clarifying The Voltage Specifications 2 of 2

EMTS (Table 5-9): Voltage, Temperature, and Frequency Electrical Spec

Symbol	Description	Min	Typical	Max	Units		
VCC_BATT Voltage							
VVCC0	Voltage applied on VCC_BATT @3.0V	270M=2.40 270=2.25	3.00	3.75	V		
VVDF1	Voltage difference between VCC_BATT and VCC_IO during power-on reset or deep-sleep wake-up (from the assertion of SYS_EN to the de-assertion of nRESET_OUT)	0	-	0.30	V		
VVDF2	Voltage difference between VCC_BATT and VCC_IO when VCC_IO is enabled	0	-	0.20	V		
Tbramp	Ramp Rate	-	10	12	mV/uS		

- 270M = PXA270M Voltage Specification
- 270 = PXA270 Specification (with errata #60 against this spec)

Marvell - Next Steps

- Continue Engineering support to Customers and Field
 - Drive a hard line of due diligence for checking basics before escalation
- Provide Customer base with updated PXA270M IBIS Models
 - Both PXA270 and PXA270M have different IBIS models Available NOW!
- Publish updated Spec Updates for both PXA270M and PXA270
- PXA270 Spec Update Changes Release Version B (May 2010)
 - Updated Errata #60 Points Reader to S1
 - Added Errata #95 new errata
 - Added Specification Clarification S1 Clarifies operating specifications & Errata #60
- PXA270M Spec Update Changes Release Rev J (May 2010)
 - Updated Errata #59 points reader to S17
 - Updated Added Specification Clarification S1 highlights new PXA270M IBIS model
 - Added Specification Change S17 Some operating voltages were changed to avoid errata #59;
 however, the EMTS update deleted PXA270 specifications

Questions/Support

- ▶ Please continue to log your issues to your local FAE/escalation through:
 - support.marvell.com
- Documentation is still available at:
 - The extranet located under; <u>MY PRODUCTS</u> > <u>CELLULAR & HANDHELD SOLUTIONS</u> > <u>APPLICATIONS PROCESSORS</u> > <u>PXA27X</u>
 - Will add a note with new location on marvell.com site for docs when ready
 - The external site is;
 - -http://www.marvell.com/products/processors/applications/
 - Look for PXA27x documents and software

